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Coiling instability of multilamellar membrane tubes with anchored polymers
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We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes,
induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique
in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of
a model in which local membrane curvature and polymer concentration are coupled. The model predicts the
occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the
model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature
and complicated torsions.
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[. INTRODUCTION brane curvature. Within such a framework, hollow tubes may

also undergo other shape instabilities such as pearling

Coiling is a common occurrence in vastly different sys-[6,16,17. However, the constraints imposed by the geometry
and DNA moleculeg?] to telephone cords and tendrils of "N9- Our model predicts the occurrence of.maX|maIIy tight

climbing plants3]. The framework most commonly used to coHs. above a threshgld polymer conqentratlon. In'deed, only
model coiling in these and other systems is that of an elasti ax'm?‘”y CurVEd.CO'IS were formed In our experiments. A
rod. Buckling of the central line is explained by showing that eoretical analys_ls Shows that wrtugl _sllces through maxi-
converting twist to writhe lowers the elastic eneidy. mally curved helices can be very similar to the observed

w he coiling of cylindrical stacks of lipid mem- IMages: : : ,
bran:sfg]Jd)(/:;IISdCr%Iylglgi]nOfig(]:li/rI:: innctzr;éﬁﬁgsv(\?ith pa?] a(ran- Section Il describes the materials and methods used in our

Lo : ._experiments. Section Il describes the types of coils ob-
phiphilic polymer. This polymer has several hydrophobic ) ) .
side groups attached along a flexible hydrophilic backboneserVEd’ and shows that adhesion does not play a major role in

which it inserts into the membranes in order to shield themfhese experiments. Section IV presents the simple model that

from the surrounding watdi6]. The membranes composing e.xplains the major findings. First, a heuristic argument is
a myelin figure are in a two-dimensional liquid state, andd'Ven as to why such an approach works. Then the full

therefore cannot support twist. Application of torque on the?f??n'lpeld 'calculat|or} IS g|vent..tFl['naI:y, tﬁec. VdOlftlmedS ttr:'e
cylinder simply leads to flow of material around the tube. imeutties In-comparing quantitatively the modet an €

Thus the interplay between twist and writhe cannot explaineXpe”mem'
the coiling observed in our experiments. Il MATERIALS AND METHODS
The existence and coiling of myelin figures has been ob-
served as far back as 1854] (see alsd8]). More recently, Vesicles were made of stearoyl-oleoyl-

similar shapes have been observed during the hydration of phosphatidylcholine(SOPQ with C,g alkyl chains. The
surfactant by brin¢9,10]. Coiling of myelin figures has also polymer used is hydrophilic dextrahmolecular weight
been reported for a system of egg-yolk lecitiidi—13. This  (MW) 162000 g/moa] functionalized with both palmitoyl
system is a mixture containing many different lipids, havingalkyl chains and dodecanoic nitrobenzoxadiazole NBD
a variety of tail lengths and degrees of saturafi@d]. In  chains as fluorescent markers. The hydrophobic anchors, dis-
another experiment it was shown that a binary mixture oftributed statistically along the backbotebout 1 alkyl chain
dimyristoylphosphatidylcholine(DMPC) and cardiolipin  per 25 glucose unijsare Gg long. On average there are
forms single and double helices in the presence of calciunabout four persistence lengths between consecutive anchors.
ions [15]. In these two studies, it was claimed tHatthe  Therefore, the extension of each polymer molecule on the
energy gained by surface adhesion overcomes the energwo-dimensional membrane is much larger than its extension
cost of bending a tube, arid) the tighter the coil, the longer into the third dimension. Events were observed by phase
the line of contact between tubes becomes, thus increasirgpntrast microscopy and recorded on video. For fluorescence
the area of contact. imaging the NBD markers were excited with argon laser il-
In contrast, our experiments clearly show that surface adlumination, and observed with a cooled charge-coupled de-
hesion is negligible in our system. In order to account forvice camera.
coiling in our experiments, we present a simple model, in Samples were prepared by drying a 0.5—&l@roplet of
which we assume that polymer molecules locally induceSOPC dissolved in a 4:1 chloroform-methanol solutiér35
spontaneous curvature. The coiling instability results from ang/ml) on a glass slide. The sample was then closed from
coupling between local polymer concentration and memthe top and sides, and hydration was effected by injecting a
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FIG. 1. Image of a myelin figure at very low polymer concen-
tration. The scale bar represents 2.

polymer solution of known concentratiar, into the closed
cell. Some time after hydration, a variety of self-assembled
structures formed, including myelin figures. All the struc- FIG. 2. When the instability begins at the tip, the tube loops
tures observed in these experiments were still connected toksck upon itself forming a globular structure. Such a structure is
lipid reservoir, allowing exchange of material, including both seen herda) 0, (b) 83, (c) 109, (d) 155, (¢) 221, and(f) 371 sec
lipids and polymer molecules. Experiments were conductedfter onset of bending. The scale bar representa 0
at room temperature, well above the solid-liquid transition
for SOPC. This allowed free diffusion of anchored polymersform the next loog18]. In cases where the coiling starts in
along the membranes. the middle, it begins as a hairpin that rotates around itself,
We stress that while the polymer concentration in solu-and the instability then proceeds in both directi¢Rsy. 5).
tion, c,, is known, we do not control the surface concentra-This may result in the formation of either a tightly packed
tion on the bilayers. The slow evolution of some of the struc-Sphere or a double helix. At the site where the instability
tures we observe is consistent with a possible variation opucleates, the tube goes from nearly straight to maximally

this concentration over time. curved. The instability then propagates from this site to the
rest of the tubdFigs. 2 and b The observed evolution may
IIl. RESULTS be due to a gradual change in the concentration of polymer

molecules on the membrane.

Electron micrographs of cross sections of myelin figures All the coiled structures we observe are maximally curved
reveal that they are rodlike lyotropic liquid-crystalline struc- alreadyas they formand do not tighten up gradually, unlike
tures containing a large numbg@rundreds to thousandsf  the experiments reported by Sakuetial. [11,12. In quan-
concentric cylindrical membranes separated by thin hydratitative terms, this means that the curvature of the tube cen-
tion layers[12]. The smectic order in these stacks of mem-tral line, C, is C~1/r,, wherer is the radius of the tube. We
branes is not ideal, as many defects are present. The outeave not noticed any preferred direction in the coiling pro-
radius of a myelin figure can reach tens of micrometerscess, i.e., the helicity did not have a preferential sign. How-
while the radius of the water core may be of the order of, orever, helicity is not easily measurable with phase contrast
smaller than optical resolution (0.2m). The myelin fig-  microscopy, and therefore we cannot reach a definite conclu-
ures, which are connected at one end to a large lipid resegion regarding this issue.
voir, are continuously elongating. The rate of elongation of a In previously reported casgd41,15, coiling of myelin
myelin figure lies in the range of 0-0m/sec. Throughout figures was attributed to surface adhesion. This is clearly not
the experiment, polymer molecules continue to anchor fromhe case in our system, as demonstrated by the experiment
the surrounding solution. Hence we assume that there is coiitustrated in Fig. 3. The tip of a myelin figure, in the process
tinuous accumulation of both lipid and polymer molecules. of coiling, adhered to an air bubble, which we then moved.

Hydration of a patch of lipids by a polymer solution of Movement of the bubble stretched the cffligs. 3a—09],
small ¢, results in the formation of myelin figures, which until the latter reached a configuration in which all self-
display a clear tendency to straighten over lengths mangontact was losfFig. 3(c)]. Note also that the coil is
times larger than their diametésee Fig. 1L As c, is in-  stretched more or less homogeneously. Upon detachment
creased, myelin figures become more floppy and curved. Fdrom the bubble, the coil retracted as if it was an ordinary
large enough values af,, a writhing instability sets in and spring[Fig. 3([d—g)].
tubes bend, forming irregular structurd@sg. 2), single heli- Had surface adhesion been the dominant mechanism, one
ces[Fig. 3@], and double helicesFig. 4. The type of would not expect the response of a coil to mechanical
coiled structure formed depends in great part on the dynanstretching to be homogeneous, but rather for it to come apart
ics of the formation process. By far the most common evenat the site of weakest contact. Furthermore, adhesion cannot
is for the tip to begin to curve in upon itself forming a seem-create a restoring force. Thus, if the coil is stretched open so
ingly irregular ball-like structurgFig. 2). However, when that no contact sites are left, the tube should “forget” that it
the ball is large enough, some sort of ordering can be seewas coiled. If the force exerted on the end of the tube is then
[Fig. 5e)]. Coils that start forming at their bases usually released, adhesion would induce coil formation starting at
evolve into nearly ideal single helices. The uncoiled part ofone point and propagating to the rest of the t@imilarly to
the tube leading to the tip is pulled in and wound around tathe original formation procegsThis is in stark contrast with
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FIG. 4. Fluorescence image of a double helix. The scale bar
represents 1@m.

In order to understand better the role that the polymer
plays in the coiling phenomenon, it is important to know its
location in the membrane stack. For this purpose, fluores-
cence imaging was used. The results are shown in Fig. 7. As
can be seen, the fluorescence intensity through the slice is
concave. This is what one expects for a homogeneous poly-
mer distribution throughout the stack, since in that case the
intensity should be roughly proportional to the thickness of
the tube in the microscope slice. From this we infer that the
polymer is present, in significant quantity, throughout the
myelin figure. Images of hollow tubes, where the polymer is
predominantly on the outer layers, have a convex fluores-
cence intensity profile through their cross sections.

IV. THEORETICAL MODEL

We now present a simple theoretical model that captures
most of the key experimental observations. For simplicity,
we regard the system as if it were in equilibrium, effectively
ignoring the slow evolution of the observed structures.

Consider a stack of concentric cylindrical sheets. We rep-

FIG. 3. A sequence of images depicting a single helix beingresent each bilayer as two square latti¢esthe spirit of
mechanically stretched, and returning to a maximally curved confattice-gas mode)s corresponding to the outer and inner

figuration. The helix behaves like a spring, responding to themonolayers. Each site represents a patch of membrane hav-
stretching force by elongating uniformly. When the force is re-

moved the coil retracts. This behavior suggests a restoring force, ===
rather than surface adhesion. Times @ebefore stretching, and /‘
(b) 67, (c) 102, (d) 159, (e) 215, (f) 325, and(g) 393 sec after ﬁ\ -
initiation of stretching. Snapshotd)—(g) were taken after the force X -4
was removed. The scale bar representg.hf. .
our experimental observations.

Another piece of evidence against adhesion in our system
is provided by the presence of many other structures in our
experiments that come into contact with one another, but do
not adhere. For example, Fig(ah shows a double helix

coming into contact with a myelin figure. The myelin figure
is pushed aside when the double helix grows. This assures us FIG. 5. Formation of a complex coil. The tube becomes unstable
that the two structures are indeed in contact. Despite th@cally, forming a hairpin which gradually curls up. The intervals
contact, the structures do not adhere, and after a few minutégtween snapshots)—(d) are 45 sec long. Structur@) was ob-
they lose contact as can be seen in Fidp) .6 served 13 min after onset. The scale bar represenjsm0
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pation variabler that takes the values 1 or zero when the site
is occupied or unoccupied by a polymer molecule, respec-
tively. To estimate the area of a site we assume that the
hydrophilic backbone is in a good solvefwtaten under se-
midilute conditions. This gives a radius of gyratien=40
—80 nm.

The energy of the system is a sum of the curvature ener-
gies of the sites 2H? for a vacant site, and 2 (H—H,)?
for a site occupied by a polymek and x’ are the local
bending rigidities of a monolayer without and with an at-
tached polymer, respectively, aht} is the spontaneous cur-
vature induced by the polymer. We assume thgt-0, since
the addition of polymer tends to bend membranes into shapes
with higher curvatures. For the purpose of this simple model,
the exact molecular mechanism responsible for this is not
important. Possible mechanisms include the entropic pres-
sure of the polymer backbone, or the incommensurability
between the anchors and lipids. By convention, the curva-
tures of the inner and outer monolayers of the bilayer have
opposite signs at the same position.

A crucial assumption is that polymer molecules can dif-
fuse along the membrane, since the membrane is in a fluid

FIG. 6. A double helix coming into contact with another myelin state. In ad_dltlon, we assume that the_ﬂuctuatlons of each
figure. As the coil grows, it pushes the other figure aside. Fifteerme_mbra'r,]e in a stack are severely re_St”Cted by the presgnce
minutes after initial contact, the two myelin figures are no longerOf its neighbors. As a result, there is a strong correlation
touching. This is another demonstration that adhesion is not imporo€tween the transversal fluctuations throughout the tube. The
tant in this system. The scale bar representg. i myelin figure can thus be regarded as a flexible rod, having a
circular cross section everywhere along its axis. The experi-

. 2 . . mental pictures indeed display unchanging circular cross sec-
ing areaa“, approximately the size of a polymer molecule tions within experimental error

performing a tw_o-dlmensmnal random walk on the MeM- ~ Based on these assumptions, we developed a model that
brane. _Eaph lattice site has two degrees of ffeedom aSSO(B'redicts that a high enough polymer concentration on the
ated with it: the local mean curvatuké and a binary occu-  emprane can shift the equilibrium state from a straight tube
to a maximally curved one. We first present a heuristic argu-
ment to show that if the spontaneous curvatdrgis large
enough, the free energy of a bent tube may be lower than that
of a straight one. This approach may give a more intuitive
understanding than the detailed calculations that follow.

A. Heuristic arguments

In order to find the equilibrium state of a tube, we have to
calculate its free energy. This free energy depends on the
curvature of its central lineC, and on the polymer concen-
tration.

Consider one cylindrical bilayer of lengthand circular
cross section of radius, with the same average polymer
concentratiorpy on both sidesp, is defined as the number
of polymer molecules on a monolayer,divided by the total
number of sites on a monolayer, i.pg=na%/A, whereA is
the total area of the membrane segment. Let us calculate the
free energy cost of bending the bilayer into a portion of a
coil with central line curvatureC in three steps. First, we
bend the tube while keeping the distribution of polymer
around the tube homogeneous. Next, we allow the polymer

FIG. 7. Fluorescence image of a myelin figure showing thatto diffuse from regions of lower curvature to regions of
there is polymer inside. Inset: fluorescence intensity along the sediigher curvaturéFig. 8), and finally we consider the entropy
tion. The scale bar represents Aon. of mixing.
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From this it is obvious that there is always an energy cost to
bend the tube in this way. However, the price is independent
of the value ofH,.

Next, we take into account inhomogeneities in the distri-
bution of polymer around the tube. Such inhomogeneities
reduce the energy, if polymers move to regions of membrane
curvature closer tdl, in both the outer and inner monolay-
ers. Rewriting Eq(1) with p being now a function ofp we
get

Eiinhom(C)ZZKf dAPi[Hi(C,q’))—HO]Z

+2Kf dA[1-p,[H*(C.$)1% (3

where qu are the polymer distributions on the outer and
inner monolayers.

Subtracting Eq(3) from Eq. (1), and taking into account
conservation of polymey’dAp;=fdAp0, we see that the
energy gainAE; on(C,Ho) =Epom(C,Ho) — Einnom(C,Ho)
depends linearly on the spontaneous curvature:

FIG. 8. Schematic representation of the heuristic argument.

Starting from a straight tube with the same polymer concentration AEiihom:‘l'KHOf dA[po—pé]Hi(C,cﬁ)- (4)
on the inner and outer monolaye®, the cost of bending the tube

keepingp($) homogeneough) is Ep,,,. Allowing the polymer to L . +
diffuse around the tubéc) to the configuration shown in Fig. 11 Thus, for any polymer distribution W'WP¢H(C’¢)dA

below lowers the energy bXE;om, Ut also lowers the entropy. <IE°H(C_:'¢)dA_"_ the inhomogeneity Iowers.the_energy; €.,
The black(white) color in (c) corresponds to areas of smétirge 2 Einnom IS POSitive and can become arbitrarily large for
polymer concentration. Both,,, and the entropy are independent large values ofH,. The detailed calculatiorisee below
of Ho, while E75, . is linear inH,. Thus for large values dfi, it~ Shows that such configurations indeed exist.
is preferable to bend the tube. As for the entropy of the system, we assume that the
dominant contribution is the entropy of mixing of the poly-
The energy of a bent cylindrical bilayer withromoge-  Mers and lipids. This entropy is larger when the distribution
neous polymer distribution iSEpon=E; o+ Engrm, Where of pollymers ar_ound the cylindrical _b|Iayer is homogeneous,
E; . andE, ., are the energies of the outer and inner rncmo_favonng a straight tube. However, |t_ d_oes not depend on the
layers, respectively. According to our model spontaneo_us curvature+. Thereforeﬁﬁ is large enough, the
energy gain due t&AE;,,,(C,Ho) is larger than the free
N ) . ) energy cost coming fromE, ., and the entropy of mixing.
Enom(C)=2pox f dA[H™(C,#)—Ho] In this case, the tube is bent at equilibrium. It remains to be
shown that such an equilibrium state can occur for reason-
+ 2 able and physical values of the model parameters. For this
+2(1_p°)KJ' dA[H™(C,¢)]% @ purpose V\E)e >r/1ow turn to the full calculati%n.

where ¢ is the angle around the tubei™==3[1/r B. Mean-field calculation

+Ccosd/(1+Crcos¢)] is the local membrane curvature, e neglect fluctuations of the central line curvat@ge
anddA=d¢(1+Cr cos¢). For simplicity, we shall assume gnq correlations between different segments of the tube. A
here thatx’= «. In the full model we allow the possibility section of tubular bilayer of radiusand lengthl, with cir-

that the presence of the polymer affects the local bendingyar cross section having a fixed central line curva@ireas
rigidity (i.e., k' # «). an energyfE=E"+E ", whereE" andE~ denote the energy

For our geometry the total mean curvature obeysyfthe outer and inner leaflets, respectivey. take the form
JdAH~(C,$)= *=27l, independent ofZ. Thus the cost of

bending the cylindrical membrane, keeping the polymer dis- _ ) . RN . 2
tribution homogeneous, is E-=2a IE] [.(1=aj)+ Koy ]| TG () —oijHo |

®)

wherei =0, ... ,2xr/a—1 is the index around the tube and
j=0,...,0/a)(1+Crcos¢) is the index along the tube
(Fig. 9. aﬁ =0,1 are the occupation variables of the polymer

AEI'TomE Eﬁom(c) - Eﬁom(o)
=sz dALH*(C, )2~ H*(0,4)2].  (2)
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2

— +
In(z—)=5 ?In(l—ky—)
ii’;;” ‘: \:\\\\\\
RS ot 2 12142 ,+
T e S PPy B oY)
/”/{W \‘:&&\\\%\\\\\“ ‘\\ 1 -+ \/W
it Nt N (1+y~) (Cr)
b L N
(ONR s oot 5% + 2 12.2142,,%2
"z‘:\::.\ S . e _ 8B«'rHoy 882k ?a’H3y ©
. o2 & - * — ,
s, L 1+y*  (1+y5)2J1-(Cr)

wherey* = exp(Bu™ —28«'a?H3).

We are interested in finding the free energy as a function
of the polymer concentration on the membrape,, rather
than the chemical potential . Using

FIG. 9. A small section of a coiled stack of concentric mem-
branes showing the directions of the normadnd the binormab.
Each monolayer, having a radius is divided into patches with
running indices andj.

dIN(E*) 2mlr
P (10

on the outer and inner monolayers, respectively, and T
G™(¢;)=*1[1+Crcos¢;/(1+Crcose)], i.e., G=())Ir apu~) a
is the local mean curvature of sit¢jf. ¢;=(alr)i is the
angle around the tube as shown in Fig. 9. By this conventiot'€ 9€t
the curvature of a site on the outer leaflet has the same mag- . - )
nitude as and opposite sign to the corresponding site on the _y +218K aHoy~ a (11)
inner leaflet. P= 1+y* r(l+y*)? r2
To find the partition function, as a function of the average
polymer occupation, we sum over the polymer degrees of Solving for y* gives y"=p.[1F2(a/r)B«’aHy]/(1
freedom: —p-) to second order im/r. Substituting this into Eq(7)
and subtracting the energy for forming the straight tube,
F=(0,0-,r), we get the free energy cost of bending a single
= ex;{ —BE*+ B, Mtffiij ) (6)  bilayer of radiusr within the stack:
{0 =01 i

I

Fi(C:Pi ir)_Fi(oipi !r)

. . . 7l
The second term in the exponent is a Lagrange multiplier  _ —[k+ (&' — k— 4Bk 2a2H2) p. + 4Bk 2a2H2p? ]
that allows us to set the average concentrations on the mem- r

+

brane,p. =%, joi;/N, to the desired value by adjusting the

chemical potentialg.™. N is the total number of sites per > 1 -1 (12)
monolayer. Note thab.. is the average qb; . From this we Vi—(cr)?

calculate the free energy:
The free energy cost of bending the entire tube is then the
. . . integral of Eq.(12) over the stack. In generab.. are func-

F=(C,p)=—KgTIN(Z7)+ " Np-. (7) " tions ofr. As we do not know the form of this function, we
assume for simplicity that the average polymer concentration
é'_s the same on all the monolayers of the stack, pe(r)
=pg. Variations inp.. with r do not qualitatively change our
conclusions. Under this assumption the free energy cost of
bending the tube is

The summation over the polymer occupation degrees of fre
dom can be carried out, leading to

Ir (2= 2102y 1 Gt ()12
In(E~ =—j d¢(1+Crcosg)In[e2A@TIGC (4] 1(ro
=gl ot {(C.po) =5 | "AITF (C.p0.0) = F (00,1

2.1 * 2 +
+ 28 (WNG™ ()~ Hol *+ ™, ®) FE(Copot)—F (0pg.1)]

; ; 2m ; 2l kyypel Po) 2
where the approximatio;~(r/a)fi"d¢ was used. This = In , (13
approximation is valid when the size of a patch is signifi- re 1+1-(Crg)?
cantly smaller than the radius of the tube. We estimate that
alr,~=10 2 in our system, allowing us to expand E§) in  where Kiupe= (7 31d)[4BK"?a®H2p3+ (k' — Kk
powers ofa/r to second order, and evaluate the integral in—4,8:<’2a2H3)p0+ k], andd is the bilayer spacing in the
Eq. (8): stack.
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x 10° energy of the tube decreases upon bending, in agreement
8 with our qualitative argumer(see above

The typical dependence @, ON pg for large enough
values ofHq is shown in Fig. 10 as a solid line. When
<p1, Kwbe IS POSitive and decreases withy. In this regime
the tube is predicted to be straight on the average, but with
enhanced fluctuations due to the smaller bending modulus.
Although we assumed that the presence of polymer mol-
ecules increases the local bending rigidity of the membrane
(k"> k), their mobility makes itasierto bend the tube.

For p1<po<p2, Kiwpe IS Negative and the tubes form
maximally tightcoiled structuresp, is therefore a threshold
occupancy above which straight tubes are unstable. Above

P, P, p» straight tubes become stable again. However, this regime
. ‘ is probably unreachable in our experiments, since too large a
L L L R polymer concentration destroys the bilayers.
00 02 04 06 08 1.0 For small values oHg, «ipe iS always positive and the
p model does not predict a coiling instabilitgashed line in

Fig. 10. Therefore, we now check whether the experimental
FIG. 10. The effective bending modulus of the tubg,,., is  Vvalues of the various parameters correspond to a regime in
parabolic in the average occupanzyWe have used the following which a coiling instability is predicted. Using pipet aspira-
values of the parameters=10kgT, k' =2«, andr,=5 um. We  tion [19] we measured the bending modulus of a bilayer to
find that xy,,e depends ora andH, only through the producHj,. be 2«x=20+5kgT. We assume thatl,>10 um~ ! because
The solid curve represents,,. for aH,=0.3. WhenaH, is large  we have observed objects that have radii of curvature of the
enough @Hy>0.19 for the values ok and " we have used  order of or smaller than optical resolutior-0.2 um). We
Kkupe<0 betweenp; and p,. For smaller values oBiHoy, xwhe  supposex’> «; this is consistent with models of composite
>0 for all values ofp. The dashed curve corresponds aél, membrane$20—27 (although the systems these models de-
=0.16. scribe are different from oursand with experimentéEvans
and Rawicz measured’ =2« for membranes with grafted
polymers[19]). Putting these estimates into Ed.3) we see
The logarithm in Eq(13) is an increasing function of.  that even for small amounts of polymey,,. can become
Thus the behavior of the tube is dictated by the sign of thenegative p;=<0.1), leading to a coiling instability.
effective bending modulus of the tube,,,.. If it is positive, The model predicts an inhomogeneous polymer concen-
the minimum off(C,p,) is at C=0, and tubes are straight tration around the tube, which we now wish to calculate. In
on average. If, on the other hane,,,<0, tubes form tight the expression foEE one can use @-dependent chemical
coils, since the minimum of the free energy is at the maximapotential,uj . The distribution of polymer around the bent
possible central line curvatue= 1/r,. In this case, the free tube is then calculated as follows:

L dIn(E={ugh) 1
P07 d(Bus)  1+exd —2B(a2IrA) kG ()2 + 2882k [G($)Ir — Hol?P— fu]’

(14)

The chemical potentialg™ corresponding to a particular dimensional projections of the viewed object, and include
total concentratiorp.. were found numerically by plotting contributions from regions that are out of focus. Phase con-
the integral of Eq.(14) over ¢, as a function ofu™. The trast microscopy complicates the interpretation of the images
value of u™ corresponding to the desirgd. was then read further, since the intensity at a particular point is not a mono-
from the graph. Using it in Eq(14), we calculatecb; CEx- tonic function of the amount of material that the rays of light

amples of such distributions are shown in Fig. 11. traverse. This can create apparent defects, as illustrated in
Fig. 12, and makes resolving images such as Fig. &ery
V. IMAGING MODEL difficult.

In order to test the theoretical predictions, we have used

The model of the previous section predicts maximallynumerical simulations of various coils to derive virtual pro-
curved coils, i.e.C=1/ry, for p;<po<p,. In order to test jections, and compared them with the experimental images.
this prediction we analyzed the experimental pictures in deThe simplest objects we considered are ideal single and
tail. The images obtained from the microscope are twodouble helices. We calculated a geometrical phase diagram
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FIG. 11. The local polymer concentration as a function of the
angle around the tube is shown for two average polymer concentra-
tions, p=0.5 (solid lineg andp=0.1 (dashed lines The following
parameters have been usedia=100, rC=0.99, aHy=0.3,
k=10kgT, k' =2k.

for the different possible types of single and double helices

and their curvatures and lines of contact, as described in the : ( ;?;J \
Appendix. Finally, we considered complex coils reminiscent ‘ k
of the complex structures seen in many of our experiments. > 4

By generating simulated curves we can see the effects of
various imaging parameters on the resulting image. For ex- Dot
ample, when the coil under observation crosses the focal
plane, its shape seems to change from a symmetrical arrange-
ment to a series of parallel streaks. This is shown in Fig. 13,
where an experimental image is compared with a simulated
ideal helix rotated by 10° with respect to the imaging plane. et
In another case, the image gives the impression of a helicity
reversal as illustrated in Fig. 12, even though the helix is
ideal. A similar effect is seen when a myelin figure is slightly
C“T"ed- This d_emonstrates that even slices of very _S|mple FIG. 12. Top: Fluorescence image of a double helix showing
objects may display complex features. Therefore, it is ex-

o . that the helicity seems to reverse where the coil intersects the focal
tremely d|_ff|cult to_ reconstruct the objects that correspond toplane_ This is an artifact of the imaging geometry, as can be seen
the experimental images.

. . . for the theoreticaldeal double helix tilted at 15° at the bottom. The
Could the tight complex coils observed experimentally.aie par represents 10m.

(Fig. 5 have maximal central line curvature everywhere? In

view of the difficulties outlined above, we can only partially may pe possible to generate more complex maximally
answer this question. In order to fully define a curve in threexved coils, similar to those observisee Fig. 5], using
dimensional space, two parameters have to be specified gtpnonperiodic torsion. However, it is difficult to simulate
every point. One choice for such parameters is the curvaturg,ch objects because of the difficulty in enforcing excluded
C and the torsionr. Our theory predicts thaf=1/ro when  yojume constraints. Thus, we can only simulate the simplest
p1<p<p>. It does not, however, specify whatshould be.  structures observed experimentally. The curvatures of these

We investigated various shapes wiil=1/ro and varyingr  structures are consistent with the prediction of the model;
using a numerical simulation. The program takes two known e they are maximally curved.

functions forC and 7, and integrates them to form a three-
dimensional curve. Concentric cylinders are then drawn
around this curve. The resulting object can then be rotated
and sliced. Such a slice represents to a certain extent the Our theory assumes that the observed structures are in
depth of focus of the microscope. The resulting image is therquilibrium, and ignores their evolution. This is justified for
smoothed using a Gaussian filter, in order to remove thenany of the coiled structures, which evolve very slowly. In
underlying grid, and compared to an experimental image. most cases, this slow evolution leads to growth of the coil as
An example of this procedure is illustrated in Fig. 14. Theadditional parts of the tube become curved. A nonequilib-
best fit that we found to the experimental object shown at the&ium model is needed to account for this effect.
top is displayed at the bottom. This is a maximally curved While our model explains the observed phenomena, other
double helix with a complexthough periodit torsion. It  models have been proposed in the literature to explain coil-

VI. DISCUSSION
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[15]. Surface adhesion was also suggested as the dominant
mechanism responsible for the coiling of egg-yolk lecithin
myelin figures[13]. It was proposed that the gain in energy
coming from surface adhesion overcomes the elastic energy
required to bend the tube. Furthermore, it was postulated that
by twisting back along its length a rod increases the length of
the line of contact, thereby increasing the area of contact. An
analysis of simple helices shows that this is not generally
true. This is shown in the Appendix. First, there may be up to
four lines of contact, depending on the type of double helix.
Moreover, the length of the line of contact is not simply
related to how tight the structure is. In fact the maximum
length of the line of contact occurs when the two helices
revolve around a large radius, thereby being effectively
straight. In our system we have found strong evidence that
surface adhesion does not play a dominant role in determin-
ing the morphology.

A generalization of our model may be relevant to other
multicomponent systems. For example, calcium is known to
induce a lateral phase separation in a lipid mixture contain-
ing cardiolipin, thereby creating an inhomogeneous distribu-
tion. Egg-yolk lecithin is also a mixture of lipids with the
same head group and a variety of tail lengths and degrees of
saturation 14].

FIG. 13. A comparison between an experimental double helix Another type of curvature model—the area difference
(left) and a model ideal double helixight). This image shows the €lasticity(ADE) model—has been discussed in the literature
effect of tilting the coil by 10° with respect to the imaging plane. [23]. In this approach it is assumed that each monolayer has
Notice the cut has a symmetric appearance at the bottom, where tigecertain preferred area. If there is an area difference between
imaging plane slices through the center of the coil, shifting graduthe monolayers comprising a bilayer, then the bilayer will
ally toward an array of parallel smudges at the top. The scale babend in order to accommodate it. In effect ADE and sponta-
represents 1@m. neous curvature both predict the same equilibrium shapes for

hollow vesicles. However, ADE cannot explain the coiling
ing in other systems. The rest of the discussion is devoted tof myelin figures. This is because bending a tube, so that it is
these other possibilities. part of a torus, does not change its area. This is true for each

The coiling of DMPC-cardiolipin myelin figures was at- monolayer in the stack, and, in particular, the area difference
tributed to CA&'-mediated membrane-membrane bindingbetween layers is unchanged.

We believe coiling occurs mainly due to the spontaneous
curvature induced by the presence of the polymer molecules
as well as their mobility. Our model emphasizes these as-
pects, and neglects others such as membrane distortions due
to the polymer backbone and interactions between polymers.
We do not expect these effects to change the qualitative be-
havior of the system.
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APPENDIX: GEOMETRIC PHASE DIAGRAM
FIG. 14. Top: experimental image of a double helix. Bottom: ) ] ] ]
cross section of a theoretical double helix having maximal curva- The requirement that a physical coil does not intersect

ture (C=1/ry), and sinusoidal torsionr=2+2 sin{(2#/31)[i itself imposes a constraint on the relation between the pitch
+ 1.8 sin(27i/31+ 37/2)}. The central line of the image is shifted and the radius of a helix. This constraint, as well as the lines
by ro below the imaging plane. The scale bar representgm0 of contact, are now calculated for single and double helices.
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FIG. 15. The line of self-contact for single helicas, is the
outer radius of the tube.7zh andr, are the pitch and the radius of
the central line of the helix, respectively. The requirement that a
physical coil does not intersect itself gives two conditions. The
dashed line corresponds to the first condition, while the solid lines
corresponds to the second condition, as explained in the text.

Some of the helices studied here were considered also in
[24-27.

1. Single helix

The central line of a helical tube can be parametrized as
follows:

Ry(t)=(r,cogt),ry sint),ht), (A1)

wherer ; is the radius of the helix around the z axisrl2 is
the pitch, and is a parameter running along the curve. From
this we see that the curvature(Lt,:rll(r§+ h?), while the
torsion is given byr=h/(r2+h?).

A mye_lln figure is t_hen represented by dravylng a stack Of FIG. 17. Simulations of representative ideal theoretical helices.
concentric tubes having a circular cross section around thiggters are keyed to the diagram in Fig. 16. Most of the double

line: helices observed experimentally resemble tyge although some
of them are more symmetric than the example shown.

R(t.O)=Ry(V) +r[n(tcog ) +b()cot )], (A2) where n(t) and b(t) are the normal and binormal to the
curve at pointt and 0<r=rg, as shown in Fig. 9. The de-
mand that a physical tube does not intersect itself yields two

12 a Loose structures | conditions.
Type 1 1 (1) The curvature of the central lin€<1/r,. At C
jf Onmelineofcontact f ] =1/ry two consecutive segments along the tube come into
h/r, | et contact. From this conditipn we find thbt \r(ro—ry).
e (2) The pitch of the coil must be such that a segment of
08f o ¢ the coil does not intersect any previous segment. This re-
R quirement can be checked numerically by determining the
ost . ] distance between any two points along the curve, and de-
|/ Tworlli};fffgmact ] manding thc’.:lt this distance be .greater than or e_qualrbo 2
N The result is another constraint dr(rq,r4). Helices for
0.4M ol which this distance equalsrg have a contact line that is a

. helix with the same radius and pitch as the central line, but
0 0.4 0.8 1.2 1.6 2 . .
r./r, shifted byr, along the line of symmetry. The allowed pa-
210 K . .
rameters are summarized in Fig. (d&e alsd27]).
FIG. 16. Geometrical phase diagram for double helicgss the

outer radius of the tubes andrh is the pitch of the central line of 2. Double helices
the two helicesr; andr, are the radii of the central lines of the two . . . . .
helices. Our convention is thap<r,. There are two types of ge- Ve consider a double helix as two single helices, having

ometry, separated by the dashed line in the figure, type I, two helif@dii ry andr,, that have at least one continuous line of
ces winding around each other, and type I, interlaced helices recontact. If there is no such contact then they are simply two
volving around a central hole. The lower bound is the limit below unconnected single helices. For simplicity we assume that
which a helix intersects itself. The top right bound is the line of both tubes have the same radiysaround their respective
symmetry, where both helices have the same radius. central lines, and that these central lines wind around the z
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axis. The line of contact is itself a helix with the same pitch, ment thatD_L dR,; /t; and thai D| = 2r, we find that the line

and with a radiug ;<rco,<r;. The constraint of having a of contact is a helix with the same pitch as the other two
distance of 2, between the two central lines allows us to helices, and a radius

find r, as a function of , and h.
There are two types of double helices. Type | double he- 1
lices haveh>\r,(2r,—r,). In this case, the two helices re==\rs+rs—2ryr,cogA), (A4)
wind around their line of contact and their radii obey 2
=2ry—r,. Double helices of type Il obey the conditidn
<\r,(2ro—r,). In this case, the coils are intermingled andwhere A=(b/d—2+2\1—b/d+1/d?)¥?, d=h?/(r,r,),
wind around a hole in the middle. This is summarized as @ndb=(4rz—r2—r3)/(rr5).
phase diagram in Fig. 16. Type Il double helices have at least Double helices of type | have one line of contact, while
two lines of contacfan example is shown in structuf@) of  type Il helices typically have two lines of contact. At the
Fig. 17. dotted line in Fig. 16 the two lines merge. Type |l helices
We now find the lines of contact between the two coils oflying on the line of self-intersection also have lines of self-
a double helix. Using EqQA1) we define the central lines of contact, for a total of four lines of contact. The maximal

the two strands: length of contact lines occurs when one helix lies within the
N other and their radii go to infinity. In this case the total length

Ra(ty) =(rycogty),rysin(ty),hty), of contact is four times the length of the central line of each

R (A3)  helix. Thus, formation of a tighter helix does not necessarily
Ry(ty)=(r,coqt,+ 7),r,sin(t,+ 7),hty). mean that the line of contact increases, not to mention the

area of contact. The area of contact between two cylinders
The phasey is »= for double helices of types | and Il, and depends on the angle at which they come into contact. More-
for loose heIiceSn is determined by the requirements that over, when there are two lines of contact close togeﬁmr
there exists at least one line of contact. The line of contact isxample, near the dotted line in Fig.)1Be areas of contact

then given byD(t;,t,) =R(t;) — Ry(t,). From the require- must overlap to some degree.
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