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Coiling instability of multilamellar membrane tubes with anchored polymers
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We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes,
induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique
in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of
a model in which local membrane curvature and polymer concentration are coupled. The model predicts the
occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the
model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature
and complicated torsions.
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I. INTRODUCTION

Coiling is a common occurrence in vastly different sy
tems and on many scales, ranging from carbon nanotube@1#
and DNA molecules@2# to telephone cords and tendrils o
climbing plants@3#. The framework most commonly used
model coiling in these and other systems is that of an ela
rod. Buckling of the central line is explained by showing th
converting twist to writhe lowers the elastic energy@4#.

We study the coiling of cylindrical stacks of lipid mem
branes@5#, called myelin figures, interacting with an am-
phiphilic polymer. This polymer has several hydrophob
side groups attached along a flexible hydrophilic backbo
which it inserts into the membranes in order to shield th
from the surrounding water@6#. The membranes composin
a myelin figure are in a two-dimensional liquid state, a
therefore cannot support twist. Application of torque on t
cylinder simply leads to flow of material around the tub
Thus the interplay between twist and writhe cannot expl
the coiling observed in our experiments.

The existence and coiling of myelin figures has been
served as far back as 1854@7# ~see also@8#!. More recently,
similar shapes have been observed during the hydration
surfactant by brine@9,10#. Coiling of myelin figures has also
been reported for a system of egg-yolk lecithin@11–13#. This
system is a mixture containing many different lipids, havi
a variety of tail lengths and degrees of saturation@14#. In
another experiment it was shown that a binary mixture
dimyristoylphosphatidylcholine~DMPC! and cardiolipin
forms single and double helices in the presence of calc
ions @15#. In these two studies, it was claimed that~i! the
energy gained by surface adhesion overcomes the en
cost of bending a tube, and~ii ! the tighter the coil, the longe
the line of contact between tubes becomes, thus increa
the area of contact.

In contrast, our experiments clearly show that surface
hesion is negligible in our system. In order to account
coiling in our experiments, we present a simple model,
which we assume that polymer molecules locally indu
spontaneous curvature. The coiling instability results from
coupling between local polymer concentration and me
1063-651X/2001/63~3!/031603~11!/$15.00 63 0316
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brane curvature. Within such a framework, hollow tubes m
also undergo other shape instabilities such as pear
@6,16,17#. However, the constraints imposed by the geome
of the cylindrical membrane stack prevent them from occ
ring. Our model predicts the occurrence of maximally tig
coils above a threshold polymer concentration. Indeed, o
maximally curved coils were formed in our experiments.
theoretical analysis shows that virtual slices through ma
mally curved helices can be very similar to the observ
images.

Section II describes the materials and methods used in
experiments. Section III describes the types of coils o
served, and shows that adhesion does not play a major ro
these experiments. Section IV presents the simple model
explains the major findings. First, a heuristic argument
given as to why such an approach works. Then the
mean-field calculation is given. Finally, Sec. V outlines t
difficulties in comparing quantitatively the model and th
experiment.

II. MATERIALS AND METHODS

Vesicles were made of stearoyl-oleoy
phosphatidylcholine~SOPC! with C18 alkyl chains. The
polymer used is hydrophilic dextran@molecular weight
~MW! 162 000 g/mol# functionalized with both palmitoyl
alkyl chains and dodecanoic nitrobenzoxadiazole NB
chains as fluorescent markers. The hydrophobic anchors,
tributed statistically along the backbone~about 1 alkyl chain
per 25 glucose units! are C16 long. On average there ar
about four persistence lengths between consecutive anc
Therefore, the extension of each polymer molecule on
two-dimensional membrane is much larger than its extens
into the third dimension. Events were observed by ph
contrast microscopy and recorded on video. For fluoresce
imaging the NBD markers were excited with argon laser
lumination, and observed with a cooled charge-coupled
vice camera.

Samples were prepared by drying a 0.5–1.0m l droplet of
SOPC dissolved in a 4:1 chloroform-methanol solution~7.35
mg/ml! on a glass slide. The sample was then closed fr
the top and sides, and hydration was effected by injectin
©2001 The American Physical Society03-1
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polymer solution of known concentrationcp into the closed
cell. Some time after hydration, a variety of self-assemb
structures formed, including myelin figures. All the stru
tures observed in these experiments were still connected
lipid reservoir, allowing exchange of material, including bo
lipids and polymer molecules. Experiments were conduc
at room temperature, well above the solid-liquid transiti
for SOPC. This allowed free diffusion of anchored polyme
along the membranes.

We stress that while the polymer concentration in so
tion, cp , is known, we do not control the surface concent
tion on the bilayers. The slow evolution of some of the stru
tures we observe is consistent with a possible variation
this concentration over time.

III. RESULTS

Electron micrographs of cross sections of myelin figu
reveal that they are rodlike lyotropic liquid-crystalline stru
tures containing a large number~hundreds to thousands! of
concentric cylindrical membranes separated by thin hyd
tion layers@12#. The smectic order in these stacks of me
branes is not ideal, as many defects are present. The o
radius of a myelin figure can reach tens of micromete
while the radius of the water core may be of the order of,
smaller than optical resolution (0.2mm). The myelin fig-
ures, which are connected at one end to a large lipid re
voir, are continuously elongating. The rate of elongation o
myelin figure lies in the range of 0–0.3mm/sec. Throughout
the experiment, polymer molecules continue to anchor fr
the surrounding solution. Hence we assume that there is
tinuous accumulation of both lipid and polymer molecule

Hydration of a patch of lipids by a polymer solution o
small cp results in the formation of myelin figures, whic
display a clear tendency to straighten over lengths m
times larger than their diameter~see Fig. 1!. As cp is in-
creased, myelin figures become more floppy and curved.
large enough values ofcp , a writhing instability sets in and
tubes bend, forming irregular structures~Fig. 2!, single heli-
ces @Fig. 3~a!#, and double helices~Fig. 4!. The type of
coiled structure formed depends in great part on the dyn
ics of the formation process. By far the most common ev
is for the tip to begin to curve in upon itself forming a see
ingly irregular ball-like structure~Fig. 2!. However, when
the ball is large enough, some sort of ordering can be s
@Fig. 5~e!#. Coils that start forming at their bases usua
evolve into nearly ideal single helices. The uncoiled part
the tube leading to the tip is pulled in and wound around

FIG. 1. Image of a myelin figure at very low polymer conce
tration. The scale bar represents 20mm.
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form the next loop@18#. In cases where the coiling starts
the middle, it begins as a hairpin that rotates around its
and the instability then proceeds in both directions~Fig. 5!.
This may result in the formation of either a tightly packe
sphere or a double helix. At the site where the instabi
nucleates, the tube goes from nearly straight to maxim
curved. The instability then propagates from this site to
rest of the tube~Figs. 2 and 5!. The observed evolution ma
be due to a gradual change in the concentration of poly
molecules on the membrane.

All the coiled structures we observe are maximally curv
alreadyas they formand do not tighten up gradually, unlik
the experiments reported by Sakuraiet al. @11,12#. In quan-
titative terms, this means that the curvature of the tube c
tral line,C, is C'1/r 0, wherer 0 is the radius of the tube. We
have not noticed any preferred direction in the coiling p
cess, i.e., the helicity did not have a preferential sign. Ho
ever, helicity is not easily measurable with phase contr
microscopy, and therefore we cannot reach a definite con
sion regarding this issue.

In previously reported cases@11,15#, coiling of myelin
figures was attributed to surface adhesion. This is clearly
the case in our system, as demonstrated by the experim
illustrated in Fig. 3. The tip of a myelin figure, in the proce
of coiling, adhered to an air bubble, which we then move
Movement of the bubble stretched the coil@Figs. 3~a–c!#,
until the latter reached a configuration in which all se
contact was lost@Fig. 3~c!#. Note also that the coil is
stretched more or less homogeneously. Upon detachm
from the bubble, the coil retracted as if it was an ordina
spring @Fig. 3~d–g!#.

Had surface adhesion been the dominant mechanism,
would not expect the response of a coil to mechani
stretching to be homogeneous, but rather for it to come a
at the site of weakest contact. Furthermore, adhesion ca
create a restoring force. Thus, if the coil is stretched open
that no contact sites are left, the tube should ‘‘forget’’ tha
was coiled. If the force exerted on the end of the tube is th
released, adhesion would induce coil formation starting
one point and propagating to the rest of the tube~similarly to
the original formation process!. This is in stark contrast with

FIG. 2. When the instability begins at the tip, the tube loo
back upon itself forming a globular structure. Such a structure
seen here~a! 0, ~b! 83, ~c! 109, ~d! 155, ~e! 221, and~f! 371 sec
after onset of bending. The scale bar represents 10mm.
3-2
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COILING INSTABILITY OF MULTILAMELLA R . . . PHYSICAL REVIEW E 63 031603
our experimental observations.
Another piece of evidence against adhesion in our sys

is provided by the presence of many other structures in
experiments that come into contact with one another, bu
not adhere. For example, Fig. 6~a! shows a double helix
coming into contact with a myelin figure. The myelin figu
is pushed aside when the double helix grows. This assure
that the two structures are indeed in contact. Despite
contact, the structures do not adhere, and after a few min
they lose contact as can be seen in Fig. 6~b!.

FIG. 3. A sequence of images depicting a single helix be
mechanically stretched, and returning to a maximally curved c
figuration. The helix behaves like a spring, responding to
stretching force by elongating uniformly. When the force is
moved the coil retracts. This behavior suggests a restoring fo
rather than surface adhesion. Times are~a! before stretching, and
~b! 67, ~c! 102, ~d! 159, ~e! 215, ~f! 325, and~g! 393 sec after
initiation of stretching. Snapshots~d!–~g! were taken after the force
was removed. The scale bar represents 10mm.
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In order to understand better the role that the polym
plays in the coiling phenomenon, it is important to know
location in the membrane stack. For this purpose, fluor
cence imaging was used. The results are shown in Fig. 7
can be seen, the fluorescence intensity through the slic
concave. This is what one expects for a homogeneous p
mer distribution throughout the stack, since in that case
intensity should be roughly proportional to the thickness
the tube in the microscope slice. From this we infer that
polymer is present, in significant quantity, throughout t
myelin figure. Images of hollow tubes, where the polymer
predominantly on the outer layers, have a convex fluor
cence intensity profile through their cross sections.

IV. THEORETICAL MODEL

We now present a simple theoretical model that captu
most of the key experimental observations. For simplic
we regard the system as if it were in equilibrium, effective
ignoring the slow evolution of the observed structures.

Consider a stack of concentric cylindrical sheets. We r
resent each bilayer as two square lattices~in the spirit of
lattice-gas models!, corresponding to the outer and inn
monolayers. Each site represents a patch of membrane

g
-

e
-
e,

FIG. 4. Fluorescence image of a double helix. The scale
represents 10mm.

FIG. 5. Formation of a complex coil. The tube becomes unsta
locally, forming a hairpin which gradually curls up. The interva
between snapshots~a!–~d! are 45 sec long. Structure~e! was ob-
served 13 min after onset. The scale bar represents 10mm.
3-3
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ing areaa2, approximately the size of a polymer molecu
performing a two-dimensional random walk on the me
brane. Each lattice site has two degrees of freedom ass
ated with it: the local mean curvatureH and a binary occu-

FIG. 6. A double helix coming into contact with another mye
figure. As the coil grows, it pushes the other figure aside. Fift
minutes after initial contact, the two myelin figures are no long
touching. This is another demonstration that adhesion is not im
tant in this system. The scale bar represents 10mm.

FIG. 7. Fluorescence image of a myelin figure showing t
there is polymer inside. Inset: fluorescence intensity along the
tion. The scale bar represents 10mm.
03160
-
ci-

pation variables that takes the values 1 or zero when the s
is occupied or unoccupied by a polymer molecule, resp
tively. To estimate the area of a site we assume that
hydrophilic backbone is in a good solvent~water! under se-
midilute conditions. This gives a radius of gyrationa'40
280 nm.

The energy of the system is a sum of the curvature en
gies of the sites 2kH2 for a vacant site, and 2k8(H2H0)2

for a site occupied by a polymer.k and k8 are the local
bending rigidities of a monolayer without and with an a
tached polymer, respectively, andH0 is the spontaneous cur
vature induced by the polymer. We assume thatH0.0, since
the addition of polymer tends to bend membranes into sha
with higher curvatures. For the purpose of this simple mod
the exact molecular mechanism responsible for this is
important. Possible mechanisms include the entropic p
sure of the polymer backbone, or the incommensurabi
between the anchors and lipids. By convention, the cur
tures of the inner and outer monolayers of the bilayer h
opposite signs at the same position.

A crucial assumption is that polymer molecules can d
fuse along the membrane, since the membrane is in a fl
state. In addition, we assume that the fluctuations of e
membrane in a stack are severely restricted by the pres
of its neighbors. As a result, there is a strong correlat
between the transversal fluctuations throughout the tube.
myelin figure can thus be regarded as a flexible rod, havin
circular cross section everywhere along its axis. The exp
mental pictures indeed display unchanging circular cross
tions within experimental error.

Based on these assumptions, we developed a model
predicts that a high enough polymer concentration on
membrane can shift the equilibrium state from a straight tu
to a maximally curved one. We first present a heuristic ar
ment to show that if the spontaneous curvatureH0 is large
enough, the free energy of a bent tube may be lower than
of a straight one. This approach may give a more intuit
understanding than the detailed calculations that follow.

A. Heuristic arguments

In order to find the equilibrium state of a tube, we have
calculate its free energy. This free energy depends on
curvature of its central line,C, and on the polymer concen
tration.

Consider one cylindrical bilayer of lengthl and circular
cross section of radiusr, with the same average polyme
concentrationr0 on both sides.r0 is defined as the numbe
of polymer molecules on a monolayer,n, divided by the total
number of sites on a monolayer, i.e.,r05na2/A, whereA is
the total area of the membrane segment. Let us calculate
free energy cost of bending the bilayer into a portion o
coil with central line curvatureC in three steps. First, we
bend the tube while keeping the distribution of polym
around the tube homogeneous. Next, we allow the polym
to diffuse from regions of lower curvature to regions
higher curvature~Fig. 8!, and finally we consider the entrop
of mixing.

n
r
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t
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COILING INSTABILITY OF MULTILAMELLA R . . . PHYSICAL REVIEW E 63 031603
The energy of a bent cylindrical bilayer with ahomoge-
neous polymer distribution isEhom5Ehom

1 1Ehom
2 , where

Ehom
1 andEhom

2 are the energies of the outer and inner mon
layers, respectively. According to our model

Ehom
6 ~C!52r0k8E dA@H6~C,f!2H0#2

12~12r0!kE dA@H6~C,f!#2, ~1!

where f is the angle around the tube,H656 1
2 @1/r

1C cosf/(11Cr cosf)# is the local membrane curvature
anddA5df(11Cr cosf). For simplicity, we shall assum
here thatk85k. In the full model we allow the possibility
that the presence of the polymer affects the local bend
rigidity ~i.e., k8Þk).

For our geometry the total mean curvature obe
*dAH6(C,f)562p l , independent ofC. Thus the cost of
bending the cylindrical membrane, keeping the polymer d
tribution homogeneous, is

DEhom
6 [Ehom

6 ~C!2Ehom
6 ~0!

52kE dA@H6~C,f!22H6~0,f!2#. ~2!

FIG. 8. Schematic representation of the heuristic argum
Starting from a straight tube with the same polymer concentra
on the inner and outer monolayers~a!, the cost of bending the tub
keepingr(f) homogeneous~b! is Ehom

6 . Allowing the polymer to
diffuse around the tube~c! to the configuration shown in Fig. 11
below lowers the energy byDEinhom

6 , but also lowers the entropy
The black~white! color in ~c! corresponds to areas of small~large!
polymer concentration. BothEhom and the entropy are independe
of H0, while Einhom

6 is linear inH0. Thus for large values ofH0 it
is preferable to bend the tube.
03160
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From this it is obvious that there is always an energy cos
bend the tube in this way. However, the price is independ
of the value ofH0.

Next, we take into account inhomogeneities in the dis
bution of polymer around the tube. Such inhomogeneit
reduce the energy, if polymers move to regions of membr
curvature closer toH0 in both the outer and inner monolay
ers. Rewriting Eq.~1! with r being now a function off we
get

Einhom
6 ~C!52kE dArf

6@H6~C,f!2H0#2

12kE dA@12rf
6#@H6~C,f!#2, ~3!

where rf
6 are the polymer distributions on the outer a

inner monolayers.
Subtracting Eq.~3! from Eq. ~1!, and taking into accoun

conservation of polymer*dArf
65*dAr0, we see that the

energy gainDEinhom
6 (C,H0)[Ehom

6 (C,H0)2Einhom
6 (C,H0)

depends linearly on the spontaneous curvature:

DEinhom
6 54kH0E dA@r02rf

6#H6~C,f!. ~4!

Thus, for any polymer distribution with*rf
6H(C,f)dA

,*r0H(C,f)dA, the inhomogeneity lowers the energy; i.e
DEinhom

6 is positive and can become arbitrarily large f
large values ofH0. The detailed calculation~see below!
shows that such configurations indeed exist.

As for the entropy of the system, we assume that
dominant contribution is the entropy of mixing of the pol
mers and lipids. This entropy is larger when the distributi
of polymers around the cylindrical bilayer is homogeneo
favoring a straight tube. However, it does not depend on
spontaneous curvature. Therefore, ifH0 is large enough, the
energy gain due toDEinhom

6 (C,H0) is larger than the free
energy cost coming fromDEhom

6 and the entropy of mixing.
In this case, the tube is bent at equilibrium. It remains to
shown that such an equilibrium state can occur for reas
able and physical values of the model parameters. For
purpose we now turn to the full calculation.

B. Mean-field calculation

We neglect fluctuations of the central line curvatureC,
and correlations between different segments of the tube
section of tubular bilayer of radiusr and lengthl, with cir-
cular cross section having a fixed central line curvatureC has
an energyE5E11E2, whereE1 andE2 denote the energy
of the outer and inner leaflets, respectively.E6 take the form

E652a2(
i , j

@k~12s i j
6!1k8s i j

6#S 1

r
G6~f i !2s i j

6H0D 2

,

~5!

wherei 50, . . . ,2pr /a21 is the index around the tube an
j 50, . . . ,(l /a)(11Cr cosfi) is the index along the tube
~Fig. 9!. s i j

650,1 are the occupation variables of the polym

t.
n

3-5
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on the outer and inner monolayers, respectively, a
G6(f i)56 1

2 @11Cr cosfi /(11Cr cosfi)#, i.e., G6(f i)/r
is the local mean curvature of site (i j ). f i5(a/r ) i is the
angle around the tube as shown in Fig. 9. By this conven
the curvature of a site on the outer leaflet has the same m
nitude as and opposite sign to the corresponding site on
inner leaflet.

To find the partition function, as a function of the avera
polymer occupation, we sum over the polymer degrees
freedom:

J65 (
$s i j

6
50,1%

expS 2bE61b(
i , j

m6s i j
6D . ~6!

The second term in the exponent is a Lagrange multip
that allows us to set the average concentrations on the m
brane,r65( i , js i j

6/N, to the desired value by adjusting th
chemical potentialsm6. N is the total number of sites pe
monolayer. Note thatr6 is the average ofrf

6 . From this we
calculate the free energy:

F6~C,r!52KBT ln~J6!1m6Nr6 . ~7!

The summation over the polymer occupation degrees of f
dom can be carried out, leading to

ln~J6!5
lr

a2E0

2p

df~11Cr cosf!ln@e22b(a2/r 2)k[G6(f)] 2

1e22ba2k8[(1/r )G6(f)2H0] 21bm6
#, ~8!

where the approximation( i'(r /a)*0
2pdf was used. This

approximation is valid when the size of a patch is sign
cantly smaller than the radius of the tube. We estimate
a/r 0'1022 in our system, allowing us to expand Eq.~8! in
powers ofa/r to second order, and evaluate the integral
Eq. ~8!:

FIG. 9. A small section of a coiled stack of concentric me

branes showing the directions of the normalnW and the binormalbW .
Each monolayer, having a radiusr, is divided into patches with
running indicesi and j.
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ln~J6!5
p l

2r F4r 2

a2
ln~11y6!

2
2b~k1k8y624ba2k82H0

2y6!

~11y6!A12~Cr !2

6
8bk8rH 0y6

11y6
2

8b2k82a2H0
2y62

~11y6!2A12~Cr !2G , ~9!

wherey65exp(bm622bk8a2H0
2).

We are interested in finding the free energy as a funct
of the polymer concentration on the membrane,r6 , rather
than the chemical potentialm6. Using

] ln~J6!

]~bm6!
5

2p lr

a2
r6 , ~10!

we get

r65
y6

11y6
6

2bk8a2H0y6

r ~11y6!2
1OS a2

r 2 D . ~11!

Solving for y6 gives y65r6@172(a/r )bk8aH0#/(1
2r6) to second order ina/r . Substituting this into Eq.~7!
and subtracting the energy for forming the straight tu
F6(0,r6 ,r ), we get the free energy cost of bending a sing
bilayer of radiusr within the stack:

F6~C,r6 ,r !2F6~0,r6 ,r !

5
p l

r
@k1~k82k24bk82a2H0

2!r614bk82a2H0
2r6

2 #

3F 1

A12~cr !2
21G . ~12!

The free energy cost of bending the entire tube is then
integral of Eq.~12! over the stack. In general,r6 are func-
tions of r. As we do not know the form of this function, w
assume for simplicity that the average polymer concentra
is the same on all the monolayers of the stack, i.e.,r6(r )
5r0. Variations inr6 with r do not qualitatively change ou
conclusions. Under this assumption the free energy cos
bending the tube is

f ~C,r0!5
1

dE0

r 0
dr@F1~C,r0 ,r !2F1~0,r0 ,r !

1F2~C,r0 ,r !2F2~0,r0 ,r !#

5
2lk tube~r0!

r 0
2

lnF 2

11A12~Cr0!2G , ~13!

where k tube5(pr 0
2/d)@4bk82a2H0

2r0
21(k82k

24bk82a2H0
2)r01k#, and d is the bilayer spacing in the

stack.

-
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The logarithm in Eq.~13! is an increasing function ofC.
Thus the behavior of the tube is dictated by the sign of
effective bending modulus of the tube,k tube. If it is positive,
the minimum of f (C,r0) is at C50, and tubes are straigh
on average. If, on the other hand,k tube,0, tubes form tight
coils, since the minimum of the free energy is at the maxim
possible central line curvatureC51/r 0. In this case, the free

FIG. 10. The effective bending modulus of the tube,k tube, is
parabolic in the average occupancyr. We have used the following
values of the parameters:k510kBT, k852k, andr 055 mm. We
find thatk tube depends ona andH0 only through the productaH0.
The solid curve representsk tube for aH050.3. WhenaH0 is large
enough (aH0.0.19 for the values ofk and k8 we have used!,
k tube,0 betweenr1 and r2. For smaller values ofaH0 , k tube

.0 for all values ofr. The dashed curve corresponds toaH0

50.16.
r

lly

de
o

03160
e

l

energy of the tube decreases upon bending, in agreem
with our qualitative argument~see above!.

The typical dependence ofk tube on r0 for large enough
values ofH0 is shown in Fig. 10 as a solid line. Whenr0
,r1, k tube is positive and decreases withr0. In this regime
the tube is predicted to be straight on the average, but w
enhanced fluctuations due to the smaller bending modu
Although we assumed that the presence of polymer m
ecules increases the local bending rigidity of the membr
(k8.k), their mobility makes iteasierto bend the tube.

For r1,r0,r2 , k tube is negative and the tubes form
maximally tightcoiled structures.r1 is therefore a threshold
occupancy above which straight tubes are unstable. Ab
r2 straight tubes become stable again. However, this reg
is probably unreachable in our experiments, since too larg
polymer concentration destroys the bilayers.

For small values ofH0 , k tube is always positive and the
model does not predict a coiling instability~dashed line in
Fig. 10!. Therefore, we now check whether the experimen
values of the various parameters correspond to a regim
which a coiling instability is predicted. Using pipet aspir
tion @19# we measured the bending modulus of a bilayer
be 2k.2065kBT. We assume thatH0.10 mm21 because
we have observed objects that have radii of curvature of
order of or smaller than optical resolution (;0.2 mm). We
supposek8.k; this is consistent with models of composi
membranes@20–22# ~although the systems these models d
scribe are different from ours!, and with experiments~Evans
and Rawicz measuredk8.2k for membranes with grafted
polymers@19#!. Putting these estimates into Eq.~13! we see
that even for small amounts of polymerk tube can become
negative (r1<0.1), leading to a coiling instability.

The model predicts an inhomogeneous polymer conc
tration around the tube, which we now wish to calculate.
the expression forJ one can use af-dependent chemica
potentialmf

6 . The distribution of polymer around the ben
tube is then calculated as follows:
rf
65

d ln~J6$mf
6%!

d~bmf
6!

5
1

11exp@22b~a2/r 2!kG6~f!212ba2k8@G6~f!/r 2H0#22bm6#
. ~14!
de
on-
ges
o-

ht
d in

sed
o-
es.

and
ram
The chemical potentialsm6 corresponding to a particula
total concentrationr6 were found numerically by plotting
the integral of Eq.~14! over f, as a function ofm6. The
value ofm6 corresponding to the desiredr6 was then read
from the graph. Using it in Eq.~14!, we calculatedrf

6 . Ex-
amples of such distributions are shown in Fig. 11.

V. IMAGING MODEL

The model of the previous section predicts maxima
curved coils, i.e.,C51/r 0, for r1,r0,r2. In order to test
this prediction we analyzed the experimental pictures in
tail. The images obtained from the microscope are tw
-
-

dimensional projections of the viewed object, and inclu
contributions from regions that are out of focus. Phase c
trast microscopy complicates the interpretation of the ima
further, since the intensity at a particular point is not a mon
tonic function of the amount of material that the rays of lig
traverse. This can create apparent defects, as illustrate
Fig. 12, and makes resolving images such as Fig. 5~e! very
difficult.

In order to test the theoretical predictions, we have u
numerical simulations of various coils to derive virtual pr
jections, and compared them with the experimental imag
The simplest objects we considered are ideal single
double helices. We calculated a geometrical phase diag
3-7
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for the different possible types of single and double heli
and their curvatures and lines of contact, as described in
Appendix. Finally, we considered complex coils reminisce
of the complex structures seen in many of our experime

By generating simulated curves we can see the effect
various imaging parameters on the resulting image. For
ample, when the coil under observation crosses the fo
plane, its shape seems to change from a symmetrical arra
ment to a series of parallel streaks. This is shown in Fig.
where an experimental image is compared with a simula
ideal helix rotated by 10° with respect to the imaging pla
In another case, the image gives the impression of a hel
reversal as illustrated in Fig. 12, even though the helix
ideal. A similar effect is seen when a myelin figure is sligh
curved. This demonstrates that even slices of very sim
objects may display complex features. Therefore, it is
tremely difficult to reconstruct the objects that correspond
the experimental images.

Could the tight complex coils observed experimenta
~Fig. 5! have maximal central line curvature everywhere?
view of the difficulties outlined above, we can only partial
answer this question. In order to fully define a curve in thr
dimensional space, two parameters have to be specifie
every point. One choice for such parameters is the curva
C and the torsiont. Our theory predicts thatC51/r 0 when
r1,r,r2. It does not, however, specify whatt should be.
We investigated various shapes withC'1/r 0 and varyingt
using a numerical simulation. The program takes two kno
functions forC and t, and integrates them to form a thre
dimensional curve. Concentric cylinders are then dra
around this curve. The resulting object can then be rota
and sliced. Such a slice represents to a certain extent
depth of focus of the microscope. The resulting image is t
smoothed using a Gaussian filter, in order to remove
underlying grid, and compared to an experimental image

An example of this procedure is illustrated in Fig. 14. T
best fit that we found to the experimental object shown at
top is displayed at the bottom. This is a maximally curv
double helix with a complex~though periodic! torsion. It

FIG. 11. The local polymer concentration as a function of
angle around the tube is shown for two average polymer conce
tions,r50.5 ~solid lines! andr50.1 ~dashed lines!. The following
parameters have been used:r /a5100, rC50.99, aH050.3,
k510kBT, k852k.
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may be possible to generate more complex maxima
curved coils, similar to those observed@see Fig. 5~e!#, using
a nonperiodic torsion. However, it is difficult to simula
such objects because of the difficulty in enforcing exclud
volume constraints. Thus, we can only simulate the simp
structures observed experimentally. The curvatures of th
structures are consistent with the prediction of the mod
i.e., they are maximally curved.

VI. DISCUSSION

Our theory assumes that the observed structures ar
equilibrium, and ignores their evolution. This is justified f
many of the coiled structures, which evolve very slowly.
most cases, this slow evolution leads to growth of the coi
additional parts of the tube become curved. A nonequi
rium model is needed to account for this effect.

While our model explains the observed phenomena, o
models have been proposed in the literature to explain c

a-

FIG. 12. Top: Fluorescence image of a double helix show
that the helicity seems to reverse where the coil intersects the f
plane. This is an artifact of the imaging geometry, as can be s
for the theoreticalideal double helix tilted at 15° at the bottom. Th
scale bar represents 10mm.
3-8
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COILING INSTABILITY OF MULTILAMELLA R . . . PHYSICAL REVIEW E 63 031603
ing in other systems. The rest of the discussion is devote
these other possibilities.

The coiling of DMPC-cardiolipin myelin figures was a
tributed to Ca21-mediated membrane-membrane bindi

FIG. 13. A comparison between an experimental double h
~left! and a model ideal double helix~right!. This image shows the
effect of tilting the coil by 10° with respect to the imaging plan
Notice the cut has a symmetric appearance at the bottom, wher
imaging plane slices through the center of the coil, shifting gra
ally toward an array of parallel smudges at the top. The scale
represents 10mm.

FIG. 14. Top: experimental image of a double helix. Botto
cross section of a theoretical double helix having maximal cur
ture (C51/r 0), and sinusoidal torsiont5212 sin$(2p/31)@ i
11.8 sin(2pi/3113p/2)#%. The central line of the image is shifte
by r 0 below the imaging plane. The scale bar represents 10mm.
03160
to

@15#. Surface adhesion was also suggested as the dom
mechanism responsible for the coiling of egg-yolk lecith
myelin figures@13#. It was proposed that the gain in energ
coming from surface adhesion overcomes the elastic en
required to bend the tube. Furthermore, it was postulated
by twisting back along its length a rod increases the length
the line of contact, thereby increasing the area of contact.
analysis of simple helices shows that this is not gener
true. This is shown in the Appendix. First, there may be up
four lines of contact, depending on the type of double he
Moreover, the length of the line of contact is not simp
related to how tight the structure is. In fact the maximu
length of the line of contact occurs when the two helic
revolve around a large radius, thereby being effectiv
straight. In our system we have found strong evidence
surface adhesion does not play a dominant role in determ
ing the morphology.

A generalization of our model may be relevant to oth
multicomponent systems. For example, calcium is known
induce a lateral phase separation in a lipid mixture conta
ing cardiolipin, thereby creating an inhomogeneous distri
tion. Egg-yolk lecithin is also a mixture of lipids with th
same head group and a variety of tail lengths and degree
saturation@14#.

Another type of curvature model—the area differen
elasticity~ADE! model—has been discussed in the literatu
@23#. In this approach it is assumed that each monolayer
a certain preferred area. If there is an area difference betw
the monolayers comprising a bilayer, then the bilayer w
bend in order to accommodate it. In effect ADE and spon
neous curvature both predict the same equilibrium shapes
hollow vesicles. However, ADE cannot explain the coilin
of myelin figures. This is because bending a tube, so that
part of a torus, does not change its area. This is true for e
monolayer in the stack, and, in particular, the area differe
between layers is unchanged.

We believe coiling occurs mainly due to the spontaneo
curvature induced by the presence of the polymer molec
as well as their mobility. Our model emphasizes these
pects, and neglects others such as membrane distortions
to the polymer backbone and interactions between polym
We do not expect these effects to change the qualitative
havior of the system.
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APPENDIX: GEOMETRIC PHASE DIAGRAM

The requirement that a physical coil does not inters
itself imposes a constraint on the relation between the p
and the radius of a helix. This constraint, as well as the li
of contact, are now calculated for single and double helic
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Some of the helices studied here were considered als
@24–27#.

1. Single helix

The central line of a helical tube can be parametrized
follows:

RW 1~ t !5„r 1 cos~ t !,r 1 sin~ t !,ht…, ~A1!

wherer 1 is the radius of the helix around the z axis, 2ph is
the pitch, andt is a parameter running along the curve. Fro
this we see that the curvature isC5r 1 /(r 1

21h2), while the
torsion is given byt5h/(r 1

21h2).
A myelin figure is then represented by drawing a stack

concentric tubes having a circular cross section around
line:

RW ~ t,u!5RW 1~ t !1r @nW ~ t !cos~u!1bW ~ t !cos~u!#, ~A2!

FIG. 15. The line of self-contact for single helices.r 0 is the
outer radius of the tube. 2ph andr 1 are the pitch and the radius o
the central line of the helix, respectively. The requirement tha
physical coil does not intersect itself gives two conditions. T
dashed line corresponds to the first condition, while the solid li
corresponds to the second condition, as explained in the text.

FIG. 16. Geometrical phase diagram for double helices.r 0 is the
outer radius of the tubes and 2ph is the pitch of the central line o
the two helices.r 1 andr 2 are the radii of the central lines of the tw
helices. Our convention is thatr 2<r 1. There are two types of ge
ometry, separated by the dashed line in the figure, type I, two h
ces winding around each other, and type II, interlaced helices
volving around a central hole. The lower bound is the limit belo
which a helix intersects itself. The top right bound is the line
symmetry, where both helices have the same radius.
03160
in

s

f
is

where nW (t) and bW (t) are the normal and binormal to th
curve at pointt and 0,r<r 0 as shown in Fig. 9. The de
mand that a physical tube does not intersect itself yields
conditions.

~1! The curvature of the central lineC<1/r 0. At C
51/r 0 two consecutive segments along the tube come
contact. From this condition we find thath>Ar 1(r 02r 1).

~2! The pitch of the coil must be such that a segment
the coil does not intersect any previous segment. This
quirement can be checked numerically by determining
distance between any two points along the curve, and
manding that this distance be greater than or equal to 2r 0.
The result is another constraint onh(r 0 ,r 1). Helices for
which this distance equals 2r 0 have a contact line that is
helix with the same radius and pitch as the central line,
shifted by r 0 along the line of symmetry. The allowed pa
rameters are summarized in Fig. 15~see also@27#!.

2. Double helices

We consider a double helix as two single helices, hav
radii r 1 and r 2, that have at least one continuous line
contact. If there is no such contact then they are simply t
unconnected single helices. For simplicity we assume
both tubes have the same radiusr 0 around their respective
central lines, and that these central lines wind around th

a

s

li-
e-

f

FIG. 17. Simulations of representative ideal theoretical helic
Letters are keyed to the diagram in Fig. 16. Most of the dou
helices observed experimentally resemble type~c!, although some
of them are more symmetric than the example shown.
3-10
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COILING INSTABILITY OF MULTILAMELLA R . . . PHYSICAL REVIEW E 63 031603
axis. The line of contact is itself a helix with the same pitc
and with a radiusr 2<r con<r 1. The constraint of having a
distance of 2r 0 between the two central lines allows us
find r 1 as a function ofr 2 and h.

There are two types of double helices. Type I double
lices haveh.Ar 2(2r 02r 2). In this case, the two helice
wind around their line of contact and their radii obeyr 1
52r 02r 2. Double helices of type II obey the conditionh
,Ar 2(2r 02r 2). In this case, the coils are intermingled a
wind around a hole in the middle. This is summarized a
phase diagram in Fig. 16. Type II double helices have at le
two lines of contact@an example is shown in structure~d! of
Fig. 17#.

We now find the lines of contact between the two coils
a double helix. Using Eq.~A1! we define the central lines o
the two strands:

RW 1~ t1!5„r 1 cos~ t1!,r 1 sin~ t1!,ht1…,
~A3!

RW 2~ t2!5„r 2 cos~ t21h!,r 2 sin~ t21h!,ht2….

The phaseh is h5p for double helices of types I and II, an
for loose helicesh is determined by the requirements th
there exists at least one line of contact. The line of contac
then given byDW (t1 ,t2)5RW 1(t1)2RW 2(t2). From the require-
.

.

h.

to

ta

s.

03160
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ment thatDW']RW i /]t i and thatuDW u52r 0 we find that the line
of contact is a helix with the same pitch as the other t
helices, and a radius

r c5
1

2
Ar 1

21r 2
222r 1r 2 cos~D!, ~A4!

where D5(b/d2262A12b/d11/d2)1/2, d5h2/(r 1r 2),
andb5(4r 0

22r 1
22r 2

2)/(r 1r 2).
Double helices of type I have one line of contact, wh

type II helices typically have two lines of contact. At th
dotted line in Fig. 16 the two lines merge. Type II helic
lying on the line of self-intersection also have lines of se
contact, for a total of four lines of contact. The maxim
length of contact lines occurs when one helix lies within t
other and their radii go to infinity. In this case the total leng
of contact is four times the length of the central line of ea
helix. Thus, formation of a tighter helix does not necessa
mean that the line of contact increases, not to mention
area of contact. The area of contact between two cylind
depends on the angle at which they come into contact. Mo
over, when there are two lines of contact close together~for
example, near the dotted line in Fig. 16! the areas of contac
must overlap to some degree.
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